首頁
1
最新消息
2
技術新知
3
群速度色散(GVD)和群延遲色散(GDD)4
https://www.steo.com.tw/ 超鋒科技股份有限公司
超鋒科技股份有限公司 238 新北市新北市樹林區東豐街49巷45號
1. 前言1960年美國物理學家TH梅曼製造了世界上第一台紅寶石雷射器,從此人們便可獲得優良單色性、方向性好、高亮度的光。原子受激輻射產生的光,即“激光”,是二十世紀人類最偉大的發明之一。雷射廣泛應用於社會各個領域,醫學、軍事、通訊、工業,創造了許多新興產業也改變了許多傳統產業。雷射冷卻是利用雷射和原子的相互作用減速原子運動以獲得超低溫度原子的高新技術。溫度的本質是自由運動粒子密度和自由粒子平均動能的度量,粒子運動越快,物體越熱溫度越高;粒子運動越慢,物體溫度越低,為了不斷降溫達到絕對零度,降低自由粒子的運動速度成了唯一的方法。早在20世紀初就發現光對原子有輻射壓力,利用雷射可以加速原子同樣也可以使原子減速。 在現代物理中,許多實驗工作如原子鐘,囚禁原子離子,都需要對粒子進行控制,首先就要放慢它們的速度,提高測量的精度,雷射冷卻廣泛應用於冷原子物理中,這項技術使得操縱和控制單個原子成為可能,也能減少在熱原子中由於原子無規則熱運動與碰撞帶來的測量誤差。 1997年諾貝爾物理學獎頒給了美國華裔物理學家朱棣文、科恩·塔諾基和法國的威廉·菲利普斯,以表彰他們發現了激光冷卻和捕獲原子的方法。2. 如何把原子冷卻下來2.1 多普勒技術-雷射減速原子雷射冷卻涉及光的多普勒效應光的動量原子能階量子化以及原子對光子的隨機吸收。從上世紀七、八十年代以來,科學家就能利用一種叫做多普勒冷卻的技術來冷卻原子。例如用一對相向運動的雷射光束,先將原子至於兩束雷射之間,雷射的頻率要略低於原子吸收光譜線的中心頻率,假設原子向其中一邊的A雷射移動,由於多普勒效應,原子感受到的雷射光束頻率升高,原子吸收來自A雷射的光子的幾率增大,同樣的對於另一邊的B雷射,感受到原子光,如果有上下、左右、前後各個方向的雷射光束就能將朝各個方向移動的原子都減慢速度,達到原子冷卻的目的。所謂多普勒效應,想像一下,當你聽到一個車輛鳴笛,它接近時聲音會高,遠離時聲音會低,這就是多普勒效應。在多普勒冷卻中,原子會因為多普勒效應而變慢,就好像被一個微型「雷射煞車」煞車了一樣。透過這種技術能將原子冷卻到絕對溫度以上1nK。 沿笛卡爾座標系軸向擺放的三對雷射光束 2.2 磁光阱技術-空間束縛原子磁光阱技術透過精密調控磁場和光場之間的相互作用,實現對微觀粒子的精確控制,這裡的「阱」類似於一個位能陷阱,能夠將物質束縛在一個特定的區域。也就是用磁鐵和磁力,將分子或原子囚禁在勢阱中心,任何偏離中心的原子或分子都會受到指向中心的散射力 2.3 亞多普勒冷卻技術-原子能階躍遷因而損失動能多普勒冷卻技術加上磁光阱技術就能實現對原子氣的高效冷卻的同時在空間上對其進行囚禁,並且磁光阱中的冷卻極限遠低於多普勒冷卻極限。由於能量守恆,原子在位能高處動能低,位能低處動能高。當高能階的原子吸收光子躍遷到激發態時,有一定機率自發輻射到基態m_j=-1/2能階,在這過程中,原子釋放的能量大於吸收光子的能量,也就是原子的能量不斷損失,溫度從不斷下降。根據這種冷卻機制,可以得到比多普勒冷卻更低的溫度。 原子上下能階不同磁子能階之間的相對躍遷強度 2.4 熵理論對雷射製冷的理解對於一個系統的冷卻往往需要一個另一個開放系統不斷地將熵抽離,在雷射冷卻中扮演此角色的正是雷射系統。透過將系統的高熵部分移除,同樣可以實現冷凍的任務。蒸發冷卻即透過降低勢阱深度,將高能量原子去除,剩下一部分具有較低動能的原子重新達到熱平衡後,系統的總能量不斷下降,所以溫度也會進一步下降。就像把爐灶內燃燒的木柴抽走,從而降低爐灶的溫度。這一思路也被沿用到更低溫度的方法探索中,如浸潤冷卻,將一個系統「浸潤」在另一個體系中從而將熵轉移,實現更低溫度的降溫。宏觀上理解就是將飲料放入冰水里,達到進一步「冰鎮」的效果。 蒸發冷卻示意圖,高能量粒子溢出後原子團溫度下降 3. 分子雷射冷卻近三十年來,雷射冷卻原子技術一直是物理學科的熱門研究方向之一,將原子系統冷卻到超低溫度並控制其量子態已經在多個領域取得了諸多進展,如冷原子中、玻色-愛因斯坦凝聚、物理精密測量、量子模擬以及量子計算機等等。但在分子層面,與原子相比,分子的自由度更多,擁有更多複雜的內部能階結構,雷射冷卻的方法同樣可以利用到分子冷卻當中。2010年美國耶魯大學的愛德華·舒曼和戴維·德米爾使用了幾項新技術成功將氟化鍶(SrF)冷卻到幾百微開,這是單分子雷射製冷首次達到這樣接近絕對零度的低溫[]。分子的雷射製冷比原子更複雜,原子透過在一定頻率的光場下會因為多普勒效應而逐漸冷卻,利用的是原子和光子的相互作用。但由於分子比原子更重,更難對雷射產生反應,不僅如此分子比起原子擁有更複雜的結構,分子會以原子鍵、旋轉和自旋等方式儲存能量,這讓分子的雷射冷卻難度更高。愛德華和戴維的團隊採用了SrF分子,這種中分子不會在激光下發生振動阻礙製冷,同時他們選用了一束彩色激光,以確保能量會被分子吸收而不是讓分子產生自旋。這項成果意義重大,部分分子存在極性,在超低溫下可視為微小的磁體,可以用來研究量子力學的化學性質。超冷分子具有磁性的特性意味著分子可以透過磁場互相反應,這對量子計算也有重大意義。 SrF的能階結構 2013年,美國實驗天體物理聯合研究所的Ye小組報告了橫向激光冷卻YO(氧化釔)的實驗結果,2014年英國帝國學院的Hinds小組演示了縱向激光對CaF分子的減速和冷卻實驗,還有很多分子如BaH、BaF和YbF也有新的實驗進展。同時也有一些科學研究團隊開始挑戰多原子分子的雷射冷卻,例如美國哈佛大學的Doyle小組以及實現了SrOH的一維雷射冷卻,分子的橫向溫度能降低到750uK。4. 未來前景絕對零度是永遠不可能達到的極限,熱力學第三定律是宇宙的固有法則。但追求絕對零度並不是無意義的,它為我們帶來了意想不到的發現,並讓我們能夠研究粒子間互相作用力的根本原因。在無限逼近絕對零度的時候,各種物質的物理特性都開始發生極大而奇異的變化了,其中許多物理特性對於科學研究來說,具有相當大的價值。基於雷射冷卻技術的冷原子物理的應用原來越廣泛,國際上利用冷原子製造的原子鐘,其精度最高已經達到了要150億年才誤差一秒。冷原子物理成為了基礎物理科學研究的方向之一,英國、加拿大、日本、韓國也都成立了相對應的冷原子物理研究機構。 2018年5月21日,在美國國家航空暨太空總署沃洛普斯飛行基地,安塔瑞斯火箭載著「天鵝座」太空船發射升空。天鵝座太空船上裝載了冰箱大小的冷原子實驗室,價值七千萬美元。耗費如此巨資,就是為了在太空微重力的環境下研究超低溫狀態下原子的量子特性。 空間冷原子鐘 2018年5月21日,攜帶OA-9的天鵝座太空船發射升空 2021年8月中國計量科學研究院發表了一篇小型化磁光阱晶片的方案,採取衍射光柵晶片與原子冷卻俘獲相結合的方案,透過線性光柵對單束入射光進行相位調製,成功實現了晶片尺度下原子的冷卻,為實現磁光阱系統微小型化奠定了堅實基礎。 小型化磁光阱晶片。 (a)傳統四極線圈的概念示意圖。 (b)線圈晶片的概念示意圖。 (c)晶片線圈照片。 (d)晶片線圈穩定電壓和功率表徵。 (e), (f)晶片線圈軸、徑向磁場分佈特性。 雷射冷卻技術一方面向物理極限的更深處探索,一方面不斷簡化實驗系統,朝向更有效率智慧冷凍邁進。對於分子層面的冷卻才剛起步,面對更複雜的分子系統,雷射冷卻方案也在不斷進化,從最早的固定頻率的雙向雷射光束冷卻,到六向雷射光束冷卻,磁光阱約束,到採用彩色雷射減少分子的自旋,雷射冷卻自誕生之初就是人類探索超低溫和量子力學的必經之路。5. 總結 雷射冷卻技術自上世紀七十年代誕生以來,一直是人類探索絕對零度的有力助手,從最初Wineland等人的幾百uK到Phillips實現將鈉原子冷卻到42uK,再到與磁光阱技術相結合,達到nK量級。人類借助雷射這一工具不斷向絕對零度進軍,同時探索超低溫下原子的奇妙特性。另一方面雷射冷卻也是分子冷卻的核心技術,利用雷射探索結構更複雜的雙原子超低溫特性。更低的溫度意味著更小的熱漲落,這為更多量子多體物理領域的科學問題提供了實驗條件。同時未來冷原子物理的發展需要更先進的冷凍技術以及更精確的量子調控能力,雷射冷卻技術未來仍需要不斷發展進步,為人類探索未知指明道路。參考資料[1]http://nobelprize.org/nobel_prizes/physics/laureates/1997/[2]CJFoot, Atomic physics。 [4]孟祥瑞,蘇國賢,苑震生.原子冷卻技術的發展[J].低溫物理學報,2021,43(01):1-17.DOI:10.13380/j.ltpl.2021.01.001.[5]Shuman, E., Barry, J. & DedMule, NMmol, Nsmol, B. –823 (2010).[6]Liang Chen, Chang-Jiang Huang, Xin-Biao Xu, Yi-Chen Zhang, Dong-Qi Ma, Zheng-Tian Lu, Zhu-Bo Wang, Guang-Jie Chen, Ji-Zhe Zhang, Hong X. Tang, Chun-Hua Dong, Wen Liu, Guo-Yong Xiang, Gugem. lied 17, 034031 – Published 10 March 2022 https://www.steo.com.tw/hot_512705.html 雷射冷卻技術:光與微觀世界的溫度之舞 2025-04-24 2026-04-24
超鋒科技股份有限公司 238 新北市新北市樹林區東豐街49巷45號 https://www.steo.com.tw/hot_512705.html
超鋒科技股份有限公司 238 新北市新北市樹林區東豐街49巷45號 https://www.steo.com.tw/hot_512705.html
https://schema.org/EventMovedOnline https://schema.org/OfflineEventAttendanceMode
2025-04-24 http://schema.org/InStock TWD 0 https://www.steo.com.tw/hot_512705.html

相關連結:https://www.highlightoptics.com/Technology/249.html

飛秒雷射脈寬窄、頻譜寬,對色散會有特別嚴格的要求。 短脈衝對色散非常敏感,當脈衝長度的平方小於群延遲色散時,會產生顯著的脈衝展寬。 只有低色散的鏡片和膜層才能保證飛秒雷射在傳播過程中保持原有的特性。 同時,飛秒雷射在傳播過程中不可避免地會發生展寬或啁啾,需要利用特別的負色散鏡進行調節補償,因此低群速度色散GDD反射鏡和負色散鏡對飛秒雷射的應用特別關鍵。低群色散GDD鏡片和高品質負色散鏡,需要獨特的膜層技術能夠精確控制鏡片和膜層的色散特性。

由於不同頻率復色光的光在同一介質中的折射率不一樣,因此不同頻率的光相速度也不一樣,導致它們會以不同的折射角被分解而在出射區域形成光譜,這就叫色散。 群速度的概念和波包相關,波包相當與多種頻率得光波組成的集合。 波包最大振幅處的傳播速度就是群速度。 當波包在介質中傳播史,由於波包中不同頻率得光波會有不同的傳播速度,於是波包的形狀會發生變化,這就是群速度色散(GVD,Group Velocity Dispersion),也稱之為群速彌散。 當脈衝長度的平方小於群延遲色散時,會產生顯著的脈衝展寬。 下圖是當脈衝通過介質時產生的脈衝展寬現象。




GVD本質上指的是群速度在光通過透明介質時,它發生的變化和頻率或波長有關的現象。 這個術語也可以用作一個精確定義的量,即逆群速度對角頻率(有時是波長)的導數,GVD的值可以由以下公式表達:

GVD=∂∂ω1vg=∂∂ω∂k∂ω=∂2k∂ω2

其中k是頻率相關的波數,在考慮到與波導相關的應用時,我們可以用β進行代替。

由於群速度色散是單位長度的群延遲色散,當我們要計算一個波導的群延遲色散時,可以用群速度色散與波導長度進行相乘,其基本單位是s2/m。 例如,二氧化矽在800 nm處的群速度色散為35 fs2/mm,在1500 nm處的群速度色散為- 26 fs2/mm。 在這些波長之間的某個地方(約1.3微米),存在著零色散波長。

在光纖通信中,群速度色散的定義不是群速度對角頻率的導數,而是定義為對波長的導數。 由以下GVD參數可以計算出:

Dλ=∂∂λ1vg=-2πcλ2∙GVD=-2πcλ2∂2k∂ω2

上述的這個量通常以ps/(nm km)為單位(每納米波長變化的皮秒數和公里傳播距離)。 例如,20ps /(nm km)在1550nm(電信光纖的一個典型值)相當於- 25509 fs2/m。

重要的是要認識到由於長波長對應較小的光學頻率而產生的GVD和Dλ的不同意義。 正態色散意味著隨著光頻率的增加群速度降低; 這在大多數情況下都會發生,而負色散與之相反。 根據不同的情況,群速度色散可以有不同的重要影響:
  • 它與超短脈衝的色散時間展寬或壓縮有關。
  • 在光纖中,非線性效應強烈地依賴於群速度色散。 例如,可能會有光譜展寬或壓縮,這取決於色散特性。
  • 在參數非線性相互作用中,色散也是不同波群速度不匹配的原因。 例如,它可以限制倍頻器、光參量振蕩器和放大器的交互頻寬。
綜合上述原因,我們知道超快雷射由於時間脈寬窄,頻域譜寬較大,因此對色散會有特別嚴格的要求。 短脈衝對色散非常敏感。 當脈衝長度的平方小於群延遲色散時,會產生顯著的脈衝展寬。 群速度只有在群速彌散效應非常小的情況下才有意義,如果群速彌散效應非常大,波包可能很快就會解體,這時的群速度也就沒有意義了。 只有低色散的鏡片和膜層才能保證飛秒雷射在傳播過程中保持原有的特性。 只有低色散的鏡片和膜層才能保證飛秒雷射在傳播過程中保持原有的特性。 要使群速度色散非常小,就必須使得波包的頻寬非常小。


群延遲色散(GDD)和三階色散(TOD)

如果脈衝被介質反射鏡反射,改反射鏡表面鍍由高、低折射率交替相疊的薄膜層,會有一個相移在原始和反射的脈衝之間產生。 一般來說,相移Φ(ω)在中心頻率附近ω0可能擴大ω0附近的泰勒級數頻率表達式為:



其中Φ' (ω0)為群延遲(GD,Group Delay),Φ'' (ω0)為群延遲色散(GDD,Group Delay Dispersion),Φ''' (ω0)為三階色散(TOD,Third Order Dispersion),更嚴格地說,這種展開式只適用於完全可以解的模型,變換限制高斯脈衝的傳播和純相位色散。 對於非常短的脈衝和振幅和相位色散的組合,數值計算可能是必要的。 然而,這一擴展清楚地顯示了單個術語的物理意義:

假設相移是線性的頻率(即GD≠0, GDD = 0和TOD = 0脈衝頻寬),反射的脈衝是由不斷的群延遲的影響而發生相位延遲,當然,縮放的振幅反射率和脈衝頻譜仍將不失真。 當GDD≠0時,觀察到兩個重要效應:

反射脈衝被暫時加寬。 這種展寬效應只取決於GDD的絕對值。我司提供「低GDD雷射鏡片」,即鏡片在給定波長範圍內|GDD|<20 fs2; 當脈衝被這些反射鏡反射時,需要這個鏡片的作用來保持脈衝形狀。

此外,脈衝變成“啁啾”,即它在脈衝時間改變其瞬時頻率。 這種效應取決於GDD的信號,所以暫態頻率可能會變高(上調-啁啾,GDD>0)或更低(向下-啁啾,GDD<0)。 這允許通過使用負GDD反射鏡來補償非線性光學元件的正GDD效應。 如下圖所示,可以通過正負GDD來平衡色散的震蕩。



同時,飛秒雷射在傳播過程中不可避免地會發生展寬或啁啾,需要利用特別的負色散鏡進行調節補償,因此低群延遲色散GDD反射鏡和負色散鏡對飛秒鐳射的應用特別關鍵。 TOD還決定了脈衝長度和脈衝形狀(有可能引起脈衝失真),在脈衝長度為20fs及以下時,TOD是一個非常重要的因素。 在低群色散GDD鏡片和高品質負色散鏡領域,需要獨特的膜層技術能夠精確控制鏡片和膜層的色散特性。

上一個 回列表 下一個