首页
1
最新消息
2
技术新知
3
玻璃切割难点何在?超快雷射+光束整形完美解决!4
https://www.steo.com.tw/cn/ 超锋科技股份有限公司
超锋科技股份有限公司 238 新北市新北市树林区东丰街49巷45号
1. 前言1960年美国物理学家TH梅曼制造了世界上第一台红宝石雷射器,从此人们便可获得优良单色性、方向性好、高亮度的光。原子受激辐射产生的光,即“激光”,是二十世纪人类最伟大的发明之一。雷射广泛应用於社会各个领域,医学、军事、通讯、工业,创造了许多新兴产业也改变了许多传统产业。雷射冷却是利用雷射和原子的相互作用减速原子运动以获得超低温度原子的高新技术。温度的本质是自由运动粒子密度和自由粒子平均动能的度量,粒子运动越快,物体越热温度越高;粒子运动越慢,物体温度越低,为了不断降温达到绝对零度,降低自由粒子的运动速度成了唯一的方法。早在20世纪初就发现光对原子有辐射压力,利用雷射可以加速原子同样也可以使原子减速。 在现代物理中,许多实验工作如原子钟,囚禁原子离子,都需要对粒子进行控制,首先就要放慢它们的速度,提高测量的精度,雷射冷却广泛应用於冷原子物理中,这项技术使得操纵和控制单个原子成为可能,也能减少在热原子中由於原子无规则热运动与碰撞带来的测量误差。 1997年诺贝尔物理学奖颁给了美国华裔物理学家朱棣文、科恩·塔诺基和法国的威廉·菲利普斯,以表彰他们发现了激光冷却和捕获原子的方法。2. 如何把原子冷却下来2.1 多普勒技术-雷射减速原子雷射冷却涉及光的多普勒效应光的动量原子能阶量子化以及原子对光子的随机吸收。从上世纪七、八十年代以来,科学家就能利用一种叫做多普勒冷却的技术来冷却原子。例如用一对相向运动的雷射光束,先将原子至於两束雷射之间,雷射的频率要略低於原子吸收光谱线的中心频率,假设原子向其中一边的A雷射移动,由於多普勒效应,原子感受到的雷射光束频率升高,原子吸收来自A雷射的光子的几率增大,同样的对於另一边的B雷射,感受到原子光,如果有上下、左右、前后各个方向的雷射光束就能将朝各个方向移动的原子都减慢速度,达到原子冷却的目的。所谓多普勒效应,想像一下,当你听到一个车辆鸣笛,它接近时声音会高,远离时声音会低,这就是多普勒效应。在多普勒冷却中,原子会因为多普勒效应而变慢,就好像被一个微型「雷射煞车」煞车了一样。透过这种技术能将原子冷却到绝对温度以上1nK。 沿笛卡尔座标系轴向摆放的三对雷射光束 2.2 磁光阱技术-空间束缚原子磁光阱技术透过精密调控磁场和光场之间的相互作用,实现对微观粒子的精确控制,这里的「阱」类似於一个位能陷阱,能够将物质束缚在一个特定的区域。也就是用磁铁和磁力,将分子或原子囚禁在势阱中心,任何偏离中心的原子或分子都会受到指向中心的散射力 2.3 亚多普勒冷却技术-原子能阶跃迁因而损失动能多普勒冷却技术加上磁光阱技术就能实现对原子气的高效冷却的同时在空间上对其进行囚禁,并且磁光阱中的冷却极限远低於多普勒冷却极限。由於能量守恒,原子在位能高处动能低,位能低处动能高。当高能阶的原子吸收光子跃迁到激发态时,有一定机率自发辐射到基态m_j=-1/2能阶,在这过程中,原子释放的能量大於吸收光子的能量,也就是原子的能量不断损失,温度从不断下降。根据这种冷却机制,可以得到比多普勒冷却更低的温度。 原子上下能阶不同磁子能阶之间的相对跃迁强度 2.4 熵理论对雷射制冷的理解对於一个系统的冷却往往需要一个另一个开放系统不断地将熵抽离,在雷射冷却中扮演此角色的正是雷射系统。透过将系统的高熵部分移除,同样可以实现冷冻的任务。蒸发冷却即透过降低势阱深度,将高能量原子去除,剩下一部分具有较低动能的原子重新达到热平衡后,系统的总能量不断下降,所以温度也会进一步下降。就像把炉灶内燃烧的木柴抽走,从而降低炉灶的温度。这一思路也被沿用到更低温度的方法探索中,如浸润冷却,将一个系统「浸润」在另一个体系中从而将熵转移,实现更低温度的降温。宏观上理解就是将饮料放入冰水里,达到进一步「冰镇」的效果。 蒸发冷却示意图,高能量粒子溢出后原子团温度下降 3. 分子雷射冷却近三十年来,雷射冷却原子技术一直是物理学科的热门研究方向之一,将原子系统冷却到超低温度并控制其量子态已经在多个领域取得了诸多进展,如冷原子中、玻色-爱因斯坦凝聚、物理精密测量、量子模拟以及量子计算机等等。但在分子层面,与原子相比,分子的自由度更多,拥有更多复杂的内部能阶结构,雷射冷却的方法同样可以利用到分子冷却当中。2010年美国耶鲁大学的爱德华·舒曼和戴维·德米尔使用了几项新技术成功将氟化锶(SrF)冷却到几百微开,这是单分子雷射制冷首次达到这样接近绝对零度的低温[]。分子的雷射制冷比原子更复杂,原子透过在一定频率的光场下会因为多普勒效应而逐渐冷却,利用的是原子和光子的相互作用。但由於分子比原子更重,更难对雷射产生反应,不仅如此分子比起原子拥有更复杂的结构,分子会以原子键、旋转和自旋等方式储存能量,这让分子的雷射冷却难度更高。爱德华和戴维的团队采用了SrF分子,这种中分子不会在激光下发生振动阻碍制冷,同时他们选用了一束彩色激光,以确保能量会被分子吸收而不是让分子产生自旋。这项成果意义重大,部分分子存在极性,在超低温下可视为微小的磁体,可以用来研究量子力学的化学性质。超冷分子具有磁性的特性意味著分子可以透过磁场互相反应,这对量子计算也有重大意义。 SrF的能阶结构 2013年,美国实验天体物理联合研究所的Ye小组报告了横向激光冷却YO(氧化钇)的实验结果,2014年英国帝国学院的Hinds小组演示了纵向激光对CaF分子的减速和冷却实验,还有很多分子如BaH、BaF和YbF也有新的实验进展。同时也有一些科学研究团队开始挑战多原子分子的雷射冷却,例如美国哈佛大学的Doyle小组以及实现了SrOH的一维雷射冷却,分子的横向温度能降低到750uK。4. 未来前景绝对零度是永远不可能达到的极限,热力学第三定律是宇宙的固有法则。但追求绝对零度并不是无意义的,它为我们带来了意想不到的发现,并让我们能够研究粒子间互相作用力的根本原因。在无限逼近绝对零度的时候,各种物质的物理特性都开始发生极大而奇异的变化了,其中许多物理特性对於科学研究来说,具有相当大的价值。基於雷射冷却技术的冷原子物理的应用原来越广泛,国际上利用冷原子制造的原子钟,其精度最高已经达到了要150亿年才误差一秒。冷原子物理成为了基础物理科学研究的方向之一,英国、加拿大、日本、韩国也都成立了相对应的冷原子物理研究机构。 2018年5月21日,在美国国家航空暨太空总署沃洛普斯飞行基地,安塔瑞斯火箭载著「天鹅座」太空船发射升空。天鹅座太空船上装载了冰箱大小的冷原子实验室,价值七千万美元。耗费如此巨资,就是为了在太空微重力的环境下研究超低温状态下原子的量子特性。 空间冷原子钟 2018年5月21日,携带OA-9的天鹅座太空船发射升空 2021年8月中国计量科学研究院发表了一篇小型化磁光阱晶片的方案,采取衍射光栅晶片与原子冷却俘获相结合的方案,透过线性光栅对单束入射光进行相位调制,成功实现了晶片尺度下原子的冷却,为实现磁光阱系统微小型化奠定了坚实基础。 小型化磁光阱晶片。 (a)传统四极线圈的概念示意图。 (b)线圈晶片的概念示意图。 (c)晶片线圈照片。 (d)晶片线圈稳定电压和功率表徵。 (e), (f)晶片线圈轴、径向磁场分布特性。 雷射冷却技术一方面向物理极限的更深处探索,一方面不断简化实验系统,朝向更有效率智慧冷冻迈进。对於分子层面的冷却才刚起步,面对更复杂的分子系统,雷射冷却方案也在不断进化,从最早的固定频率的双向雷射光束冷却,到六向雷射光束冷却,磁光阱约束,到采用彩色雷射减少分子的自旋,雷射冷却自诞生之初就是人类探索超低温和量子力学的必经之路。5. 总结 雷射冷却技术自上世纪七十年代诞生以来,一直是人类探索绝对零度的有力助手,从最初Wineland等人的几百uK到Phillips实现将钠原子冷却到42uK,再到与磁光阱技术相结合,达到nK量级。人类借助雷射这一工具不断向绝对零度进军,同时探索超低温下原子的奇妙特性。另一方面雷射冷却也是分子冷却的核心技术,利用雷射探索结构更复杂的双原子超低温特性。更低的温度意味著更小的热涨落,这为更多量子多体物理领域的科学问题提供了实验条件。同时未来冷原子物理的发展需要更先进的冷冻技术以及更精确的量子调控能力,雷射冷却技术未来仍需要不断发展进步,为人类探索未知指明道路。参考资料[1]http://nobelprize.org/nobel_prizes/physics/laureates/1997/[2]CJFoot, Atomic physics。 [4]孟祥瑞,苏国贤,苑震生.原子冷却技术的发展[J].低温物理学报,2021,43(01):1-17.DOI:10.13380/j.ltpl.2021.01.001.[5]Shuman, E., Barry, J. & DedMule, NMmol, Nsmol, B. –823 (2010).[6]Liang Chen, Chang-Jiang Huang, Xin-Biao Xu, Yi-Chen Zhang, Dong-Qi Ma, Zheng-Tian Lu, Zhu-Bo Wang, Guang-Jie Chen, Ji-Zhe Zhang, Hong X. Tang, Chun-Hua Dong, Wen Liu, Guo-Yong Xiang, Gugem. lied 17, 034031 – Published 10 March 2022 https://www.steo.com.tw/cn/hot_512705.html 雷射冷却技术:光与微观世界的温度之舞 2025-05-02 2026-05-02
超锋科技股份有限公司 238 新北市新北市树林区东丰街49巷45号 https://www.steo.com.tw/cn/hot_512705.html
超锋科技股份有限公司 238 新北市新北市树林区东丰街49巷45号 https://www.steo.com.tw/cn/hot_512705.html
https://schema.org/EventMovedOnline https://schema.org/OfflineEventAttendanceMode
2025-05-02 http://schema.org/InStock TWD 0 https://www.steo.com.tw/cn/hot_512705.html

智慧型手机的出现大大改变了人们的生活方式,而人们生活水准不断提高也对智慧型手机提出了更高要求:除了系统、硬体等功能配置不断升级外,手机外观也成为各手机厂商角力的重点。在外观材料的革新过程中,玻璃材质凭藉著造型多变、抗冲击性好、成本可控等诸多优点而受到厂家欢迎,并在手机上获得越来越广泛的应用,包括手机前盖板、后盖板、相机盖板、滤光片、指纹辨识片、三棱镜等。

尽管玻璃材质有著许多优点,但其易碎的特点为加工过程带来不少难题,如容易出现裂痕、边缘毛糙等。此外,听筒、前置相机、指纹片等位置的异型切割也对加工流程提出了更高要求。如何解决玻璃材质的加工难题、提升产品良率,成为业界共同的目标,推动玻璃切割技术的创新迫在眉睫。

玻璃切割制程对比

传统的玻璃切割制程包括刀轮切割和CNC研磨切割。刀轮切割的玻璃崩边大、边缘粗糙,对玻璃的强度会大幅影响。且刀轮切割的玻璃良率较低,材料利用率较低,切割后需进行复杂工序的后处理。刀轮进行异型切割时速度及精度会大幅下降,有些异型全面屏因转角太小,根本无法用刀轮切割。 CNC较刀轮的精度高,精度≤30μm,崩边比刀轮小,约40μm,缺点是速度慢。

随著雷射技术的发展,玻璃切割也出现了雷射的身影。雷射切割的速度快,精度高,切口没有毛边且不受形状限制,崩边一般小於80μm。

传统雷射切割玻璃为消融机制,利用聚焦后的高能量密度的雷射将玻璃融化甚至气化,高压的辅助气体则将残余的熔渣吹除。由於玻璃易碎,高重叠率的光斑会累积过度的热在玻璃上,使玻璃龟裂,因此雷射无法使用高重叠率的光斑进行一次切割,通常使用振镜进行高速扫描,将玻璃一层一层去除,一般的切割速度小於1mm/s。

近年来超快雷射(或称为超短脉冲雷射)取得了快速发展,尤其是在玻璃切割的应用上取得了非常优异的表现。超锋科技便开发出专为脆性材料加工的客制化模组,搭配超锋科技雷射的超快雷射器,能将脆性材料切得更好、更快,使成本更进一步下降。

超快雷射加工原理

众所周知,超快雷射是指输出雷射的脉冲宽度在皮秒(10 -12秒)等级、或小於皮秒等级的脉冲雷射,具备极高的峰值功率。

对玻璃等透明材料而言,当超高峰值功率的雷射被聚焦在透明材料内部时,材料内部由光传播造成的非线性极化改变了光的传播特性,使光束出现自聚焦现象(波前聚焦)。由於超快雷射的峰值功率极高,使脉冲在玻璃内不断重复聚焦,在不发散的状态下一路向下传输到材料内部,直至雷射的能量不足以继续支持发生自聚焦现象。至此,雷射传输过的地方留下了如同丝线般的轨迹(直径只有数个微米),将这些丝线连起来,对其施加应力,玻璃便会自行沿著丝线裂开。

这是玻璃被雷射改性过的结果,改质后的玻璃与原本的性质不同。而这样的加工方式也确保了加工过程中不会对所涉及的空间范围的周围材料造成影响,从而做到了加工的「超精细」。

此外,非接触式加工也可避免传统机加方式切割容易发生崩边、裂纹等问题,具有精度高、不产生微裂纹、破碎或碎片问题、边缘抗破裂性高、无需冲洗、打磨、抛光等二次制造成本等优点,降低成本的同时大幅提高了工件良率及加工效率。

超快雷射加工玻璃的困难点

超锋科技雷射的脆性材料切割模组便是利用超快雷射在材料内部的自聚焦现象进行切割、钻孔,但应用超快雷射进行自聚集也存在一定难点。例如,使用高斯光束自聚焦成丝,至多只有一两百微米的长度,而且成丝的强度、粗细不均匀,呈一端粗一端细。这便无法确保雷射作用於材料时成丝的稳定性。

超锋雷射透过光束整形解决了这个困难。一方面,超锋雷射自主开发的脆性材料切割模组透过空间分布的光束整形,将原本聚焦为一点的高斯光束变成沿轴线的线型聚焦光束,在很长的一个范围内都有不错的聚焦效果。而AOPICO皮秒系列(红外线雷射)则透过特殊的运作模式,将脉冲在时间上进行光束整形。两种光束整形的共同作用,实现了自聚焦的效果极大化。

整形后的成丝长度可达5mm以内,且粗细均匀,适合玻璃切割、钻孔。由於成丝长度长,可完全覆盖手机用的薄玻璃厚度,只需一次扫描即可完成整个切割轮廓的改质。视不同曲线而定,雷射切割的速度可从数十毫米每秒到一公尺每秒,切割速度是传统雷射消融的数十倍以上。

加工案例展示雷射脆性材料切割模组搭配超锋科技雷射的皮秒雷射器,可以进行几乎无锥度的切割及钻孔,而且可以进行任意形状的切割,满足异型全面屏的各种加工需求。可加工的玻璃种类也更多,过去被认为无法加工的强化玻璃也可以加工。部分加工案例如下(以下图片皆由超锋科技雷射提供):

摄影机盖板玻璃 T0.55 mm



康宁玻璃 T3 mm




雾面玻璃 T2 mm



蓝宝石 T0.3 mm



全面屏TFT玻璃 T0.25 mm(双层)

上一个 回列表 下一个